热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

所在位置|室友_Python+OpenCv实现图像边缘检测(滑动调节阈值)

篇首语:本文由编程笔记#小编为大家整理,主要介绍了Python+OpenCv实现图像边缘检测(滑动调节阈值)相关的知识,希望对你有一定的参考价值。 Python+OpenCv实现图像边缘检测

篇首语:本文由编程笔记#小编为大家整理,主要介绍了Python+OpenCv实现图像边缘检测(滑动调节阈值)相关的知识,希望对你有一定的参考价值。



Python+OpenCv实现图像边缘检测(滑动调节阈值)


  • 一、前言
  • 二、导入模块
  • 三、核心代码
    • 1.图像预处理
    • 2.滑动调参
    • 3.边缘检测
    • 4.图像保存
    • 5.主函数

  • 四、运行结果
  • 五、完整代码
  • 六、程序打包


一、前言

闲来无事,帮阿婆主室友处理图像。花了一天时间研究cv2中的几个函数,参考其他博主的优秀代码,在此基础上杂糅丰富,制作了一个图像边缘检测程序,通过滑动条实时调节阈值和其他参数,并能选择是否保存图像。最后通过pyinstaller将程序打包成.exe文件发送给室友使用。
(第一次学习图像处理和第一次撰写文章,如有错误,欢迎指正)


二、导入模块

使用 cv2 模块(opencv-python)
在终端中输入指令:pip install opencv-python 安装 cv2
安装成功后导入 cv2

import cv2

三、核心代码

1.图像预处理

输入三个参数,当标志位为1时表示使用该方法处理图像
默认采用 高斯滤波+直方图均衡化 的方法

def image_processing(img, Gauss_flag=1, Color_flag=1, Gray_flag=0): # 图像预处理
# 高斯滤波器平滑图像
if Gauss_flag == 1:
img = cv2.GaussianBlur(img, (3, 3), 0)
# 均衡彩色图像的直方图
if Color_flag == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
# 将彩色图像转为灰度图像,均衡灰度图像的直方图
if Gray_flag == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
return img

2.滑动调参

创建滑动条,分别控制cv2.Canny函数中的各个参数
Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)

cv2.createTrackbar('threshold1', 'Canny', 50, 300, nothing) # 阈值1
cv2.createTrackbar('threshold2', 'Canny', 100, 300, nothing) # 较大的阈值2用于检测图像中明显的边缘
cv2.createTrackbar('apertureSize', 'Canny', 0, 2, nothing) # Sobel算子大小(3,5,7)
cv2.createTrackbar('L2gradient', 'Canny', 0, 1, nothing) # 参数(布尔值):true:使用更精确的L2范数(两个方向的倒数的平方和再开放),false:使用L1范数(直接将两个方向导数的绝对值相加)

实时读取并返回滑动条所在位置的值

threshold1 = cv2.getTrackbarPos('threshold1', 'Canny') # 阈值1
threshold2 = cv2.getTrackbarPos('threshold2', 'Canny') # 阈值2
L2gradient = cv2.getTrackbarPos('L2gradient', 'Canny') # 参数
aperturesize = cv2.getTrackbarPos('apertureSize', 'Canny') # Sobel算子大小
size = aperturesize * 2 + 3 # Sobel算子大小(3,5,7)

3.边缘检测

使用cv2中的Canny函数进行边缘检测,并通过窗口显示图像

# Canny边缘检测
img_edges = cv2.Canny(img, threshold1, threshold2, apertureSize=size, L2gradient=L2gradient)
# 显示边缘化图像
cv2.imshow('Canny', img_edges)

4.图像保存

检测按键,按q退出,不保存图像;按s退出,保存图像。
(保存的图像路径与原图像相同,名命为output.jpg)

if cv2.waitKey(1) == ord('q'): # 退出
break
elif cv2.waitKey(1) == ord('s'): # 保存图像
cv2.imwrite('\\\\'.join(img_path.split('\\\\')[:-1]) + '\\\\output.jpg', img_edges)
print("图像成功保存")
break

5.主函数

输入图像地址和图像预处理函数的三个参数。
先对图像进行预处理,然后进行边缘检测。

if __name__ == "__main__":
img_path = input("请输入图片地址(如E:\\\\Code\\\\xx.jpg):")
guass_flag = int(input("是否进行高斯滤波(输入1进行,输入0不进行):"))
color_flag = int(input("是否均衡彩色图像(输入1进行,输入0不进行):"))
gray_flag = int(input("是否均衡灰度图像(输入1进行,输入0不进行):"))
# 载入图像
image = cv2.imread(img_path)
# 图像预处理
img = image_processing(image, Gauss_flag=guass_flag, Color_flag=color_flag, Gray_flag=gray_flag)
# 显示原图像
cv2.imshow('Original', image)
# 显示预处理后图像
cv2.imshow('Pretreatment', img)
# 图像边缘检测
image_canny(img)

四、运行结果

原图像:
预处理后图像:

图像边缘检测:
保存后图像:


五、完整代码

import cv2
def nothing(): # 定义回调函数
pass
def image_processing(img, Gauss_flag=1, Color_flag=1, Gray_flag=0): # 图像预处理
# 高斯滤波器平滑图像
if Gauss_flag == 1:
img = cv2.GaussianBlur(img, (3, 3), 0)
# 均衡彩色图像的直方图
if Color_flag == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
# 均衡灰度图像的直方图
if Gray_flag == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将彩色图像转为灰度图像
img = cv2.equalizeHist(img)
return img
def image_canny(img): # 图像边缘检测
# 设置窗口
cv2.namedWindow('Canny')
# 创建滑动条,分别控制各个参数
cv2.createTrackbar('threshold1', 'Canny', 50, 300, nothing) # 阈值1
cv2.createTrackbar('threshold2', 'Canny', 100, 300, nothing) # 较大的阈值2用于检测图像中明显的边缘
# cv2.createTrackbar('apertureSize', 'Canny', 0, 2, nothing) # Sobel算子大小(3,5,7)
cv2.createTrackbar('L2gradient', 'Canny', 0, 1,
nothing) # 参数(布尔值):true:使用更精确的L2范数(两个方向的倒数的平方和再开放),false:使用L1范数(直接将两个方向导数的绝对值相加)
while (1):
# 返回滑动条所在位置的值
threshold1 = cv2.getTrackbarPos('threshold1', 'Canny') # 阈值1
threshold2 = cv2.getTrackbarPos('threshold2', 'Canny') # 阈值2
L2gradient = cv2.getTrackbarPos('L2gradient', 'Canny') # 参数
# aperturesize = cv2.getTrackbarPos('apertureSize', 'Canny') # Sobel算子大小
# size = aperturesize * 2 + 3 # Sobel算子大小(3,5,7)
# Canny边缘检测
img_edges = cv2.Canny(img, threshold1, threshold2, L2gradient=L2gradient)
# 显示边缘化图像
cv2.imshow('Canny', img_edges)
if cv2.waitKey(1) == ord('q'): # 按q退出
break
elif cv2.waitKey(1) == ord('s'): # 按s保存图像到原图像所在目录,命名为output.jpg,再退出![请添加图片描述](https://img-blog.csdnimg.cn/28c23587576b4e50a8f9f1522fd67c1e.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5Zu-5Y2XX1RyZW4=,size_15,color_FFFFFF,t_70,g_se,x_16)
cv2.imwrite('\\\\'.join(img_path.split('\\\\')[:-1]) + '\\\\output.jpg', img_edges)
print("图像成功保存")
break
cv2.destroyAllWindows()
if __name__ == "__main__":
img_path = input("请输入图片地址(如E:\\\\Code\\\\xx.jpg):") # 输入原图像地址
guass_flag = int(input("是否进行高斯滤波(输入1进行,输入0不进行):")) # 输入1为进行高斯滤波,输入0为不进行
color_flag = int(input("是否均衡彩色图像(输入1进行,输入0不进行):")) # 输入1为进行彩色图像均衡,输入0为不进行
gray_flag = int(input("是否均衡灰度图像(输入1进行,输入0不进行):")) # 输入1为进行灰度图像均衡,输入0为不进行
# 载入图像
image = cv2.imread(img_path)
# 图像预处理
img = image_processing(image, Gauss_flag=guass_flag, Color_flag=color_flag, Gray_flag=gray_flag)
# 显示原图像
cv2.imshow('Original', image)
# 显示预处理后图像
cv2.imshow('Pretreatment', img)
# 图像边缘检测
image_canny(img)

六、程序打包

在终端中输入指令:pip install pyinstaller 安装 pyinstaller
安装成功后输入指令:pyinstaller -F canny.py 进行文件打包



推荐阅读
  • 本文介绍了如何在C#中启动一个应用程序,并通过枚举窗口来获取其主窗口句柄。当使用Process类启动程序时,我们通常只能获得进程的句柄,而主窗口句柄可能为0。因此,我们需要使用API函数和回调机制来准确获取主窗口句柄。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • XNA 3.0 游戏编程:从 XML 文件加载数据
    本文介绍如何在 XNA 3.0 游戏项目中从 XML 文件加载数据。我们将探讨如何将 XML 数据序列化为二进制文件,并通过内容管道加载到游戏中。此外,还会涉及自定义类型读取器和写入器的实现。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • andr ... [详细]
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
  • 并发编程:深入理解设计原理与优化
    本文探讨了并发编程中的关键设计原则,特别是Java内存模型(JMM)的happens-before规则及其对多线程编程的影响。文章详细介绍了DCL双重检查锁定模式的问题及解决方案,并总结了不同处理器和内存模型之间的关系,旨在为程序员提供更深入的理解和最佳实践。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 配置Windows操作系统以确保DAW(数字音频工作站)硬件和软件的高效运行可能是一个复杂且令人沮丧的过程。本文提供了一系列专业建议,帮助你优化Windows系统,确保录音和音频处理的流畅性。 ... [详细]
author-avatar
难得一见_Eva
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有